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INTRODUCTION

From the ubiquitous virtual assistants in our pockets to the tailored
advertisements popping up in our web browsers, Artificial Intelligence
(Al) has rapidly infiltrated our daily lives and beyond. Its ability to
process vast amounts of data, learn from it, and make intelligent
decisions, has not only transformed the way we live, work, and connect
but has also emerged as a powerful catalyst in addressing one of the
most pressing challenges of our era: the transformation of the food and

health landscape.

The need for more healthy, sustainable, and equitable food systems is
urgent. Food and diet are major determinants of our health and well-
being, influencing our susceptibility to a wide range of conditions

and metabolic diseases. Poor diets are a leading risk factor of the
global burden of disease. However, our understanding of food remains
confined to a mere fraction of its complexity, primarily focusing on well-
characterized categories of micro and macro-nutrients which represent
just the tip of the iceberg. On the flip side lies the so-called “dark
matter® of food, referring to the vast and complex array of molecules
within food yet to be discovered, including their impacts on our bodies.

Furthermore, environmental factors and agricultural practices exert a
profound influence on food systems and the composition of the food we
consume, with consequences that extend to both human and planetary
health. Food production and consumption are leading stressors on
ecosystems compared to all other human activities, including greenhouse
gas emissions linked to climate change. At the same time, food systems
are critically dependent on multiple ecosystem services to thrive.
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Concurrently, food security is a notable challenge in the United States
and globally, with disparities existing among minority, tribal, rural, and
low-income communities. Drivers of increased food insecurity, including
climate, conflict, and economic shocks, disproportionately disrupt food
accessibility and safety for low-income, rural, and underrepresented
populations. These disparities emphasize that efforts to strengthen food
systems need to foster equity. Meeting the rising demand for food with
high nutritional value in sustainable and equitable ways while coping

with climate change is a pressing societal challenge.

While the field of Al’s application is virtually limitless, its impact in
agriculture, food and health science holds the potential to bridge
knowledge gaps and revolutionize the way we grow, manufacture, and
consume food to deliver sustainable, nutritionally balanced, equitable,
and health-enhancing food for all. Al tools present an opportunity to
refine agricultural practices and enhance the discovery of functional
ingredients, ultimately contributing to the development of food products
that are not only healthier and more nutritious but also personalized and
support the wellbeing of the planet in a changing climate.

In this paper, we provide an overview of the pivotal role played by
Al in reshaping food and health systems through its application in
key domains including precision agriculture, foodomics, personalized

nutrition, and food safety, distribution, and quality.
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THE EVOLUTION OF Al AND KEY CONCEPTS

Decades before the modern definition of Al emerged, Alan Turing, often
referred to as the "father of computer science," introduced the concept
in his 1950 paper, "Computing Machinery and Intelligence" [1]. Turing's
work posed the fundamental question of whether machines could exhibit
human-like thinking and introduced the "Turing Test," where a human
examiner tries to differentiate between computer-generated and human
responses. It was in 1956 during the Dartmouth Workshop led by John
McCarthy and other pioneers including Nathaniel Rochester, Allen Newell,
Herbert A. Simon, and Marvin Minsky that the term "Artificial Intelligence"
was coined, and the field officially founded [2]. While exploring the
potential of machines in emulating human cognitive processes, they
developed the “Logic Theorist”, one of the earliest Al programs capable
of demonstrating mathematical theorems [3]. This approach using

logical reasoning marked the inception of symbolic Al and served as the
cornerstone for the development of expert systems such as MYCIN; a
program designed in the 70’s to diagnose bacterial infections and assist

medical professionals in prescribing appropriate antibiotics [4].

As computing power and big data availability started to match expectations
in Al capabilities, significant advancement in the field was made possible
through the development of machine learning and deep learning
algorithms enabling computers to learn from data and make predictions

or decisions without being explicitly programmed. In other words, these
algorithms automatically identify patterns, generalize from data, and

improve their performance on specific tasks through experience [5].

Machine learning can be subdivided into three main categories including
supervised (learning from labeled data), unsupervised (finding patterns
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in unlabeled data), and reinforcement learning (making decisions
through interaction). A core feature of deep learning — a subset of
machine learning — resides in the use of artificial neural networks

to automatically learn and represent complex patterns and features
from raw data. Inspired by the human brain's structure, these artificial
neural networks consist of interconnected layers of artificial neurons
particularly efficient in processing unstructured data [5], [6] with more
complex versions known as deep neural networks when using multiple

layers of artificial neurons [7].

The development of machine learning and deep learning algorithms
constitutes a breakthrough in the evolution of modern Al leading

to numerous real-world applications including automation and
recommendation systems, natural language processing (NLP), and
computer vision. These applications are now revolutionizing various
aspects of the food industry. From precision agriculture and optimized
food production to foodomics and personalized nutrition (Figure 1), let’s
explore the potential of Al in creating solutions for addressing both
human and planetary health challenges.
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Figure 1. The integration of data collected from omic technologies, scientific literature, the
Internet of things, geospatial technologies and wearable sensors can be used to train Artificial
Intelligence (Al) algorithms in food and health. The outputs drive innovation to improve the food
and health landscape including applied solutions in precision agriculture, optimization of food
supply chain and food formulation, identification of functional food ingredients and bioactives,
biomarker discovery, and phenotypic prediction for personalized nutrition and medicine.
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Al IN AGRICULTURE: TOWARD A MORE
SUSTAINABLE, EQUITABLE AND HEALTHIER
FOOD SYSTEM

By 2050, the world must provide sustenance for 10 billion individuals,
requiring an increase in global food production by approximately 60-

70 percent to meet the growing demand [8], [9]. Yet our existing food
system is far from being environmentally sustainable. While water, land,
and biodiversity are dwindling at an alarming rate, our food supply chain
is responsible for around one-quarter of the world’s greenhouse gas

emissions with 11 percent attributed to agriculture only [10].

In the same time, the global number of hungry individuals ranged from 691
million to 783 million in 2022, marking an increase of 180 million people
experiencing severe food insecurity compared to the previous year [11].
Food insecurity manifests in various forms, including insufficient quantity,
poor quality, or limited diversity of food, further exacerbated by challenges
faced by the food and agricultural sector in optimizing their operations to
minimize losses and costs while maximizing yields. Among other issues,
these challenges encompass factors, such as low crop yields, losses

due to weather events, pest and disease incidences, post-harvest losses
during storage and transportation, high costs of production, low revenue
generation, and uncertainties due to market dynamics [12], [13].

Once seen as a solution to bolster yield and cope with the rising food
demand, conventional agriculture is now largely questioned. Its heavy
reliance on synthetic fertilizers, pesticides, and monoculture cropping
systems, raises major concerns about its long-term sustainability including
soil erosion, water pollution, biodiversity loss, fossil fuel dependency, and

accumulation of chemical residues on crops.

But that’s not the only drawback. These agricultural practices developed
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to answer the growing demand for food often compromise the nutritional
value of our diet ultimately reflecting on human health. Since the 40’s,
agronomic research focus primarily revolved around achieving increased
yields and greater crop protein content through an over-reliance on
synthetic inputs and tillage with little consideration regarding their
negative effects on soil health and crop micronutrient density [14], [15].
Now it is well established in numerous crops that the reduction in soil

life diversity due to these farming practices has a detrimental impact on
the mineral uptake and production of phytochemicals like polyphenols,
flavonoids, and anthocyanins [16]-[19] known for their antioxidant and anti-

inflammatory properties [20]

With growing recognition of the environmental toll of conventional
agriculture, there is an urgent need for innovative techniques and
approaches that can satisfy future healthy food demands while minimizing
the footprint of our agricultural system on the planet. Application of
emerging technologies and Al solutions in precision agriculture, including
geospatial technologies, the Internet of Things, and Big Data analysis
marks a paradigm shift toward the creation of a more environmentally
conscious, equitable and healthier food system. By integrating data-driven
solutions and information from diverse sources such as satellite imagery,
weather data, and soil analysis, Al-driven technologies offer the potential
to inform strategic management decisions ultimately contributing to

improved efficiency and resource optimization [21], [22].

The availability of high-resolution (spatial, spectral, and temporal) satellite
images has promoted the use of remote sensing in many precision
agriculture applications [23]. Leveraging advanced computer vision and
sensor technologies, Al facilitates real-time monitoring of crop health.
Early detection of diseases and pests allows for targeted interventions,
therefore limiting the emergence of crop disease and minimizing the

need for chemical treatments. A number of advanced Al practices relying
on machine learning and deep learning algorithms, including computer
visualization and robotics, have been designed to reduce the use of

herbicides through precise and appropriate management of weeds [24],
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[25]. This could be extended to the implementation of new concepts
based on autonomous and intelligent robots allowing cooperation and
collaborative action among unmanned vehicles, both aerial and ground,
(UAVs and UGVs) to perform in-field operations in precise and time-
effective ways. Such technologies capable of recognizing, manipulating,
collecting, and delivering soil and plant samples required for inspection
could in turn greatly increase precision and quality in farming processes
[26], [27].

Al can also be used to improve prediction in weather conditions and help
with data interpretation from soil sensors that monitor key indicators

of soil health at unprecedented levels of precision. By continuously
assessing parameters such as moisture levels, nutrient content, and
microbial activity, farmers can then implement precise irrigation strategies,
conserving water and preventing overuse as well as tailoring fertilizer

dosages to enhance soil health and structure [26].

Although these solutions are expected to promote both the health and
nutritional density of crops through more sustainable and eco-friendly
farming approaches, the implementation of Al in precision agriculture
faces challenges. To be successful this technological revolution must
ensure data quality, interoperability, affordability, and technical literacy
among end-users. In addition, issues related to infrastructure, connectivity,
regulations, customization, security, and ethical considerations must be
addressed. Demonstrating the economic benefits of Al and providing
training and support for farmers are crucial for successful adoption.
Farmer.chat, an Al assistant developed by Digitalgreen [28] is accelerating
this transition by providing tailored assistance to hundreds of thousands of
extension workers and training small-scale farmers across the Global South
on a combination of regenerative agricultural practices and nutrition.
Overall, addressing these challenges requires collaborative efforts from
stakeholders, including farmers, technology developers, policymakers,

and researchers, to ensure the successful integration of Al in precision
agriculture and make sure these solutions can benefit the greatest number.
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USING Al TO ACCELERATE INNOVATION IN
FOOD FOR HEALTH

The food industry is constantly evolving, driven by changing consumer
preferences, dietary trends, and the growing demand for healthier and
more sustainable food options. In addition to the broader recognition
of the environmental impact of our dietary choices, the surge in
food-related disorders has encouraged consumers to bring essential
changes in their lifestyles and diet, calling for a profound remodeling

of our food system.

By offering new tools and capabilities that empower researchers, chefs,
and companies to create innovative solutions for better nutrition and
health, Al is becoming the driving force behind these transformations.
From food formulation and safety to supply management and beyond, Al
is integrating every facet of the food industry. Let’s explore how these

applications are expected to translate into better public health outcomes.

Al Solutions for Improved Quality Control and Food Safety

In the food industry, the development of standardized and reliable
procedures for quality control to ensure the safety, high quality, and
regulatory compliance of food products is crucial. The sector is actively
implementing Al to establish consistent quality control measures and
promote health-conscious practices in food production and distribution

while managing costs.
As mentioned, Al's strength lies in its ability to process and analyze

enormous datasets swiftly and accurately. One way to improve food

safety is by advancing Al models that combine various datasets, such as
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food microbial ecology, chemometric, and physical data, to thoroughly
evaluate risks throughout the entire food supply chain. machine
learning -based approaches are utilized to support supplier selection,
procurement, food safety inspection, risk assessment of imported
food, and prevention of food fraud. Furthermore, this can be enhanced
using digital twin models of food processing operations that simulate
sanitation, food handling, and transport to replicate the transmission
of pathogens within the food system and improve foodborne disease

prevention and food waste reduction [28].

Using computer vision and smart monitoring systems Al models can be
crafted to analyze data from various points in the food supply chain
and optimize resource allocation with a particular focus on operations
promoting food safety. Using radio-frequency identification tags,
Wireless Sensor Network and Near Field Communication technology,
Internet of Things traceability systems enables the creation of
comprehensive databases to monitor and store product information in
all stages of production, processing, distribution, and consumption.
Combined with blockchain based traceability systems this allows
companies to enhance consumer transparency by providing detailed
information about the origin, production methods, and safety of
purchased products [30], [31], [32]. This transparency is critical to
building trust and confidence among consumers as it offers insights into
the entire supply chain, allowing informed purchasing decisions aligned

with ethical and sustainable practices.

An example application of Al food safety control systems is the
deployment of Al-based Horizon Scanning Methodology. Horizon
Scanning detects signs of potential food safety hazards, risks, and
issues, as a monitoring technique and safety assessment approach that
shifts the food control paradigm from reactionary to preventative. Mars
deploys Horizon Scanning in its risk mitigation and management of
aflatoxin in source determination [32], which allows for early detection

and early intervention to potential contamination.
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Western Growner’s GreenlLink® is another use-case where grower’s
pathogen test data for romaine lettuce including both pre-harvest and
post-harvest testing is collected into a data sharing platform to train
machine learning models in the risk mitigation of pathogens in leafy
greens [33], a recurring vehicle of foodborne illness. In the EU’s Rapid
Alert System for Food and Feed (RASFF) [34]-[36], a Bayesian network
model is applied to predict food fraud. Another study involves the use
of extreme gradient boosting (XGBoost) machine learning algorithms to
assess risk associated with the presence of Vibrio parahaemolyticus in

oyster farms in Taiwan.

FDA’s Mandate - An Opportunity to Modernize the Food Web

Since the promulgation of Food Safety Modernization Act (FSMA) in
2011 [37], under which the FDA was given new regulatory authority

on activities related to food production, the FDA generated guidance
documents, rulemakings, reports, and strategies to strengthen the food
system to fulfill its mandate to better protect public health and address
challenges.

As computational power increased exponentially in the last decade,
technological advances enabling the deployment of Al/machine learning
spearheaded FDA’s new paradigm shift in food safety approaches to
leverage technology and other tools in creating a safer, more digital,
and traceable food system [37]. Built upon the foundational pillars of the
New Era of Smarter Food Safety, FDA unveiled Four Core Elements in

its Blueprint, taking steps to harness the power of Al. These Four Core

Elements are:
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1. Tech-Enabled Traceability

2.Smarter Tools and Approaches for Prevention

and Outbreak Response
3.New Business Models
4. Retail Modernization

These elements were created to strengthen Food Safety Culture,
including foodborne illness outbreak prevention, response, risk

mitigation, and food safety enhancement in the food supply chain.

In the domain of Tech-Enabled Traceability, rapid tracebacks, source
identification, and timely removal of contaminated products from the
marketplace have significant implications for the health and safety of
the consumer. Foundational advances in algorithm storage capacity, data
processing/mining/display, algorithm and hardware development make
possible the construction of an enhanced food traceability system with
mutual private, public, and governmental stakeholder partnerships. A key
outcome in the protection of public health is the reduction of time in the
identification of sources of contamination associated with a recall and/or
outbreak [34].

To put the criticality of health challenges of product traceability into
perspective, 94 percent of all seafood consumed in the United States
is imported [38]. A strong foreign importer verification program as well
as a robust traceability system would allow for more rapid removal of
contaminated food from the market, mitigating the risk of a foodborne

illness outbreak.

As such, as part of its Core Element 1 Tech-Enabled Traceability in the
Blueprint, the FDA now standardizes the concept of Key Data Elements
(KDEs) and Critical Tracking Events (CTEs) and requires the maintenance
of these records, a prime opportunity for the adoption of AI/ML tools in

traceability efforts. As part of the adoption of Al in traceability systems,
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the FDA has since piloted an Imported Seafood Pilot Program [39], which
is now in its third phase, deploying machine learning to screen imported
seafood products to quickly identify contaminated products with illness-
causing pathogens, decomposition and the presence of unapproved
antibiotic residues or other hazards in the supply chain.

Revealing the Dark Matter of Food

Mostly due to limited analytical capacity, research in food science and
nutrition has predominantly focused on examining the biochemical and
physiological properties of a small fraction of micro and macronutrients.
However, the human diet consists of a multitude of food components,
themselves made of thousands of biochemicals unsuspected until now
(referred to earlier as the dark matter of food), that interact in various
ways, influencing metabolism and physiological responses of the body

through additive, synergistic, or antagonistic effects [40].

Facilitated by the advent of foodomics — a multidisciplinary

approach integrating advanced omic technologies, such as genomics,
transcriptomics, proteomics, and metabolomics — our comprehension of
food is rapidly evolving toward a much more holistic dimension. These
techniques rely on the combination of bioinformatics and advanced
analytical platforms including deep-sequencing, nuclear magnetic
resonance spectroscopy (NMR), and gas chromatography and liquid
chromatography coupled to mass spectrometry (GC-MS and LC-MS)
through both targeted and untargeted approaches [41], [42]. Although
extremely powerful in deciphering the molecular composition of food,
the wealth of data generated by these techniques can be particularly
complex to navigate and analyze. This is where Al applications constitute
a real game changer, bringing our understanding of the intricate
relationship between nutrition and health to the next level [41], [43].

By analyzing large amounts of data from food composition databases,
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foodomics, and nutritional and clinical studies, Al is significantly
advancing the identification of new ingredients and bioactives with

promising health benefits.

Traditional discovery of functional food ingredients (FFls) utilizes
bioinformatic tools employing sequence similarity searches such as BLAST
(basic local alignment search tool) for virtual exploration and identification
of bioactives associated with certain molecular pathways and diseases.
Although this strategy has greatly advanced the characterization of FFls,
it cannot predict de novo bioactives and remains limited to previously
characterized compounds. Instead, Al-guided strategies using deep
learning approaches such as deep neural network and designed upon
pre-defined health benefits are expected to facilitate the prediction

of novel bioactives at an unprecedented rate [44]. In peptidomics for
example, such Al-powered benefit-driven FFIl discovery approaches were
recently taken from concept to pre-clinically proven solutions including
the characterization of novel anti-diabetic peptides to mitigate Type 2
diabetes mellitus [45], [46] and anti-inflammatory peptides to address
chronic low-grade inflammation [47]-[50].

These approaches empower Al to uncover patterns and interaction
between specific ingredients and explore molecular profiles of food at
unprecedented levels of detail leading to the creation of a much more

robust and comprehensive food database (ei; FoodAtlas, FoodB, PTFI).

Using Food Photos to Capture What People Eat

More people around the globe carry cell phones with photo-capture
capability. With advances in Al and computer vision, it is increasingly
possible to capture what people eat with those cell phones. Energy and
macronutrient content are accurately quantified from food photos [52],

[53] and work is ongoing to capture diets at an ingredient-level [54]
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(PMID: 38068830) such that foods and ingredients can then be mapped

to other databases in the food system. The use of food photos in future
crowd-sourced observational trials—think how many people carry cell
phones—could be used to track food consumption, map to the thousands
of molecules in those foods, and connect those molecules with participant
health. Food photos which have been distilled down to ingredients and
amounts can also be linked to food purchasing and commodity databases
for economic modelling and reduction of food insecurity. Finally, capturing
what people eat can also be used to inform other parts of the food

ecosystem such as food supply chains and food safety.

Toward the Next Generation of Plant-Based Food Products

With growing recognition of the ethical, environmental and health
concerns related to the consumption of animal-based food products [51]
there is an undeniable rise in the consumer demand for plant-based
alternatives as illustrated by the variety of meat and milk substitutes now

available on the market [52].

Although incentives to shift toward healthier and more sustainable

food options are strong, the negative sensory perception associated
with plant-based alternatives remains an important barrier hindering
complete consumer adherence to these products [53], [54]. Indeed taste,
texture and appearance are significant drivers in consumers choices

and replicating the sensorial experience and mouthfeel of animal-based
products in plant-based substitutes have been a major challenge to
overcome for the food industry.

In addition, the nutritional value of plant-based diets has been a
controversial topic in recent years. An important aspect driving the
debate is the quality of plant protein intake in terms of digestibility and

amino acid composition — in particular the essential amino acids that
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cannot be synthetized by the human body and need to be acquired from
food. Some studies reported that plant proteins often exhibit low quality,
poor digestibility, and found an undesired low levels in essential amino
acids (in particular lysine and methionine) in vegetarians compared to
omnivores [55], [56].

To some extent these differences in bioavailability also apply to certain
micronutrients and vitamins including calcium, iron, and vitamin B12
and D present only at low levels in plant-based diets [53]. Moreover,
some plant compounds such as phytate and oxalate, often referred to
as antinutrients can further enhance this disparity as illustrated by their

role in the inhibition of mineral absorption [57].

Nonetheless it should be noted that depending on both processing
techniques and the food matrix, many of these so-called antinutrients
can also mediate cardioprotective, neuroprotective and antioxidants
properties. Overall, when well-balanced, plant-based diet can have a
beneficial impact on the incidence of chronic diseases and gut health
[58]. This not only highlights the importance of food formulation in
harnessing the full potential of plant bioactives in manufactured plant-
based products but also opens the way to novel metabolic engineering
and breeding strategies of plants with higher content in bioactives

compound [59].

Groundbreaking foodtech companies are leveraging Al to explore the
vast and untapped repertoire of edible plants to formulate plant-based
recipes mimicking the full sensory attributes of animal-based foods while
providing enhanced nutritional value and health benefits. The Chilean
foodtech NotCo, for example, employs a machine learning algorithm
named Giuseppe that analyzes the molecular compositions of food and
suggests novel combinations from a pool of 300,000 plant ingredients
to emulate distinct products like hamburgers, chicken, and milk. Meati
Foods, a startup producing meat alternatives from mycelium (“mushroom

root”) is partnering with PIPA LLC, an Al company specialized in nutrition
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and life sciences to explore the extensive range of health benefits of its
products. On a similar trend through its collaboration with the machine
learning -driven platform Benchling, the plant-based cheese maker
Climax Foods is ramping up its ingredient discovery and streamlining
its formulation process to accelerate the launch of healthier and more

realistic animal-free cheese options onto the market.

Al in Personalized Health and Nutrition

Presuming that a single optimal diet would fit every person’s needs is
clearly unrealistic when we consider the diverse biological makeup of
humans. Our genetics, metabolism, physiological status, gut microbiome,
lifestyle, and environment, to name a few, deeply influence our
nutritional requirements [64], [65], [66]. Through a better understanding
of the inter-individual variability inherent to these factors, omic
technologies hold the potential to transform our approach to nutrition
and public health by facilitating the emergence of personalized dietary
recommendations and medical practices [67]. Although these approaches
are extremely valuable, our limited comprehension of the dynamic
interaction between nutrition, metabolism, and health outcomes have

hindered their translation and application.

Here as well, Al is making a major contribution. Using integrated data-
driven approaches, predictive computational models can be trained to
reflect phenotypic response to nutrition and changes resulting from
the interaction between genotypic and nutrient-derived metabolic
factors [64]. Data mining and extraction from electronic health records
that capture human diversity, can significantly improve the design of
personalized diets and recommendation based on patient singularities
[60]. The development of wearable and mobile sensor technology is

expected to provide accurate, non-invasive, and real-time insights on
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critical parameters including, physical activity, blood glucose levels
and other metabolic biomarkers upon food intake to improve precision
nutrition [65]. To further enhance tailoring, this could be paired

with emerging Al powered applications using computer vision being
developed to provide portion size, calorie count and macronutrient

breakdown estimates of a meal from a photo.

Al4FoodDB, a public database that centralizes food images, wearable
sensors, validated questionnaires and biological samples from obese
patients following nutritional weight loss intervention , outlines the
efficacy of digital data collection methods and Al-powered technology in
mitigating food-related chronic diseases. In a case study monitoring 100
overweight and obese participants for one month, this approach showed
a significant reduction of glycated hemoglobin levels, body weight

and waist/hip ratio after dietary intervention accompanied by healthier
lifestyle changes such as lower meat consumption and higher levels of

physical activity [66].

Machine learning algorithms using a random forest model and out-
of-bag estimation have also been developed to analyze the effect of
dietary intake on the human gut microbiome from fecal bacteria and
metabolites [71]. Through the identification of biomarkers that can help
predict the influence of food components on health and disease onset,
such application is expected to further enhance the development of gut
microbe-targeted therapies and improve clinical outcomes in chronic
diseases including Irritable bowel syndrome , depression, anxiety and
Type 2 diabetes mellitus [68], [72], [73].

Database mapping and machine learning are also being used to connect
diet, food composition, and health outcomes in observational trials. For
example, the ingredientization of diet in a human cohort and subsequent
mapping of those ingredients to the Davis Food Glyocopedia 1.0 [74],
demonstrated that specific dietary monosaccharides are associated with

specific gut microbes, implying that we may one day be able to tailor
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diet to manipulate gut microbes [75]. Exploring diet, lifestyle factors,
and bone mineral density (BMD) in the same cohort using machine
learning revealed that BMD in postmenopausal women is associated
with fecal pH; higher BMD occurred in those with lower pH, an indicator
of increased microbial fermentation of dietary fiber in the colon [76].
As more comprehensive food composition databases become available,
specific molecules associated with desired health outcomes can be

identified, and then used to inform food formulation.

On the consumer end, many food recommender systems and applications
such as Deepfood, PERSON, and Nutrinet can help people explore
nutrition patterns and maintain a healthy diet through the use of deep
convolutional neural network models based on food recognition, dietary

assessment or individual’s genetics [70]-[73].

As the field of personalized nutrition keeps expanding, the question

of data protection needs to be carefully examined to ensure personal
information privacy and security, particularly when health records are
concerned. Moreover, dietary and lifestyle choices are influenced by

a broad range of socioeconomic factors including income, education,
social networks, and environment which can, in turn, significantly impact
both large-scale adoption of these new technologies and their long-term

efficacy in terms of health outcomes.
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CONCLUSION

Since its inception, technological advancements in computing, hardware
developments and processing performance have revolutionized Al
technologies, leading to a considerable expansion of its field of
application. We now have tools to learn from the best - Mother Nature -
and create foods with unprecedented health benefits that are affordable,
sustainable, and satisfying. Similar to how we revolutionized human
well-being in the early 20th century by discovering the micronutrients
that make up only 1 percent of our food, we can achieve a much deeper
transformative change by uncovering the molecular composition of the

remaining 99 percent.

From seed to fork, the creation of more robust and complex deep
learning models offers exciting opportunities to reshape the entire

food industry by transforming the way we produce, consume, and
experience food. With the adoption of Al-powered innovations, crop
breeding strategies can be streamlined to create more resilient and
nutritious crop varieties that can help address climate change and food
security challenges. Also, as we progress towards a more sustainable
food system, developing a digital atlas to map essential material flows
enables the identification of valuable resources that are presently being
wasted. Ultimately, through the curation of the right data sets we can
move beyond traditional food labeling and empower consumers to make

informed decisions simply by capturing a photo with their phone.

Although the potential of Al driven approaches is immense, this
transformation does not come without challenges and risks. The
acquisition of reliable big data for deep learning training requires

time and effort, and still relies largely on human judgment making its
automation difficult. Though Al has machine precision, it isn’t immune to

human error. When fed with biased datasets, erroneous decisions and
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conclusions can be made, which can in turn impede trust building and
hinder consumer adoption. In addition, ensuring privacy and security
of sensitive information while maintaining transparency in the methods

used for data selection can be extremely challenging to achieve.

Nonetheless, Al technology offers an opportunity to deconstruct and
learn from low-quality datasets, resulting in more robust experimental
approaches and improved data reliability. Additionally, by making
complex data more accessible and interpretable, the development of
better data visualization tools is critical in enhancing comprehension,
communication, and decision-making in Al-driven technology. To achieve
this technological revolution, fostering an engaged computer science
community to help develop the necessary data and algorithms is key.

As we can anticipate the next generation of Al to be increasingly
performant, what was previously considered from the realm of science
fiction is becoming more and more tangible. With developers working
toward the creation of strong Al or Artificial General Intelligence
expected to autonomously perform virtually any task — or even
potentially reach self-awareness and surpass human mind — close
scrutiny of the risk-benefit balance provided by such technologies

is fundamental. Although it is imperative to implement safeguards to
prevent misuse and ensure that profitability, societal well-being, and
planetary health all possess aligned incentives, the rapid evolution of Al
systems is expected to play a pivotal role in the creation of a healthier

and more sustainable future.
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